KEYWORDS: Atomic force microscopy, Dielectrics, Silicon, Manufacturing, Silica, Finite element methods, Etching, Sensors, Optics manufacturing, Deep reactive ion etching
In this paper authors present design, technology and application of soft silicon dioxide AFM cantilevers. Novel technology allows for manufacturing ultra-soft cantilevers equipped with silicon tip. Mechanical properties of developed probes were tested and finally applied in AFM measurements of fragile samples.
In this paper we describe the method for monitoring the progress of electrochemical deposition process. The procedure allows to control the deposition of metals as well as conductive polymers on metallic seed layer. The method is particularly useful to very thin layers (1-10 nm) of deposited medium which mechanical or optical methods are troublesome for. In this method deposit is grown on the target and on the test silicon micro-cantilever with a metal pad. Galvanic deposition on the cantilever causes the change of its mass and consequently the change of its resonance frequency. Changes of the frequency is measured with laser vibro-meter then the layer thicknesses can be estimated basing on the cantilever calibration curve. Applying this method for controlling of gold deposition on platinum seed layer, for improving the properties of the biochemical sensors, is described in this paper.
KEYWORDS: Sensors, Microopto electromechanical systems, Micromirrors, Calibration, Electronics, Head, Laser sources, System integration, Signal to noise ratio, Data acquisition
Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.
In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of
shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was
used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam.
Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible
and can be applied in many surface investigations. In this article we will present operation theory of the described
solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be
illustrated with example results of topography measurements performed using the described technology.
In this article we describe a novel piezoresistive cantilever technology The described cantilever can be also applied in the
investigations of the thermal surface properties in all Scanning Thermal Microscopy (SThM) techniques. Batch
lithography/etch patterning process combined with focused ion beam (FIB) modification allows to manufacture thermally
active, resistive tips with a nanometer radius of curvature. This design makes the proposed nanoprobes especially
attractive for their application in the measurement of the thermal behavior of micro- and nanoelectronic devices.
Developed microcantilever is equipped with piezoresistive deflection sensor. The proposed architecture of the cantilever
probe enables easy its easy integration with micro- and nanomanipulators and scanning electron microscopes.In order to
approach very precisely the microcantilever near to the location to be characterized, it is mounted on a compact
nanomanipulator based on a novel mobile technology. This technology allows very stable positioning, with a nanometric
resolution over several centimeters which is for example useful for large samples investigations. Moreover, thanks to the
vacuum-compatibility, the experiments can be carried out inside scanning electron microscopes.
This paper is focused on manufacture technology of molecular self-assembled monolayers (SAM) using
microcontact printing (μCP) techniqe. This technique, due to its low-cost and simplicity, is a very attractive one for
further development of molecular electronics and nanotechnology. The SAM can be produced on gold or silicon oxide
using thiol and silane based chemistry respectively[1]. The μCP techniques allow the imposition of molecular structures
in specific areas. The chemical properties of the fabricated layers depend on the functional groups of tail molecules. Such
structures can be used as chemical receptors or as interface between the substrate and the biosensor receptors [2].
Architecture of the tail molecule determines the chemical reactivity and hydrophilic or hydrophobic properties. In
addition it modifies the tribological properties [4] and electrical structure parameters, such as contact potential diference
(CPD) [5]. The height of the SAM structure containing carbon chain is highly dependent on the length and type of
binding molecules to the substrate, which enables application of the μCP SAM structures in height metrology. The
results of these studies will be presented in the work.
Silicon nanowires (SiNWs) have undergone intensive research for their application in novel integrated systems such as
field effect transistor (FET) biosensors and mass sensing resonators profiting from large surface-to-volume ratios (nano
dimensions). Such devices have been shown to have the potential for outstanding performances in terms of high
sensitivity, selectivity through surface modification and unprecedented structural characteristics. This paper presents the
results of mechanical characterization done for various types of suspended SiNWs arranged in a 3D array. The
characterization has been performed using techniques based on atomic force microscopy (AFM). This investigation is a
necessary prerequisite for the reliable and robust design of any biosensing system. This paper also describes the applied
investigation methodology and reports measurement results aggregated during series of AFM-based tests.
Increased interest in micro-and nano-electromechanical systems (MEMS and NEMS) entail the development of reliable measurement techniques for the basic parameters of the designed and manufactured devices. The proposed methodology should provide high resolution, wide frequency range and the possibility to investigate both mechanical and electrical parameters during inspection process. In this article authors present methods for manufacturing of electrostatic MEMS devices. Measurement techniques will be presented for specifying parameters such as resonant frequency, quality factor and sensitivity of the previously manufactured structures. Manufacturing techniques will be presented on the example of the micropusher structure, whereas measurement techniques will be presented on the example of the microgripper structure.
In this work we present the grid of microstructures which is used for the graphene mechanical and electrical properties
investigations. The design of the mask used for the grid production was presented. Afterwards the technological process
steps for the grid production were described. In result the support structures – trenches – in shape of lines, squares and
circles are obtained with the detail dimensions varied from 1 micrometer up to 30 micrometers. Examples of graphite
and graphene deposited on the support structures are also presented.
In this article authors present a method for determining optimal photoresist exposure parameters in a
photolithography process by an analysis of a topographic profile of exposed images in a photoresist layer. As a
measurement tool an Atomic Force Microscopy (AFM) integrated with a system for maskless lithography was
used. The measurement system with the piezoresistive cantilever and experimental procedure was described.
Initial experiments result of determining the optimal exposure energy and minimizing the stitching error method
were presented.
Application of a new thermal nano-probe based on the changes of electrical resistivity of a nanometer-sized filament with temperature has been presented for the thermal imaging of microwave power active devices. The filament is integrated into an atomic force scanning probe piezoresistive type cantilever. The novel thermal probe has a spatial resolution better than 80 nm and a thermal resolution of the order of 10-3 K. The measurements have been successfully performed on a 30 fingers GaAs-MESFET with a maximum power dissipation of 2.5 W. The microwave transistor has been implemented in a circuit in such a way to prevent the undesired microwave oscillations. In this case the power dissipation is equal to the dc power input. The near-field measurements have been compared with three-dimensional finite element simulations. A good agreement between simulations and measurements is achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.